Let P be linearity, Q be time-invariance, R be causality and S be stability. A discrete-time system has the input-output relationship,
$$y\left( n \right) = \left\{ \matrix{
\matrix{
{x\left( n \right),} & {n \ge 1} \cr
} \hfill \cr
\matrix{
{0,} & {n = 0} \cr
} \hfill \cr
\matrix{
{x\left( {n + 1} \right),} & {n \le - 1} \cr
} \hfill \cr} \right.$$
where x(n) is the input and y(n) is the output.
The above system has the properties
A. P, S but not Q, R
B. P, Q, S but not R
C. P, Q, R, S
D. O, R, S but not P
Answer: Option A
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion