Examveda

Let \[{\rm{g}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}} { - {\rm{x,}}}&{{\rm{x}} \le 1}\\ {{\rm{x}} + 1,}&{{\rm{x}} \ge 1} \end{array}} \right.\]     and \[{\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}} {1 - {\rm{x,}}}&{{\rm{x}} \le 0}\\ {{{\rm{x}}^2},}&{{\rm{x}} > 0} \end{array}} \right..\]
Consider the composition of f and g i.e. (fog) (x) = f(g(x)). The number of discontinuities in (fog) (x) present in the interval (\[ - \infty ,\]  0) is:

A. 0

B. 1

C. 2

D. 4

Answer: Option A


This Question Belongs to Engineering Maths >> Calculus

Join The Discussion

Related Questions on Calculus