Let \[{\rm{g}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}}
{ - {\rm{x,}}}&{{\rm{x}} \le 1}\\
{{\rm{x}} + 1,}&{{\rm{x}} \ge 1}
\end{array}} \right.\] and \[{\rm{f}}\left( {\rm{x}} \right) = \left\{ {\begin{array}{*{20}{c}}
{1 - {\rm{x,}}}&{{\rm{x}} \le 0}\\
{{{\rm{x}}^2},}&{{\rm{x}} > 0}
\end{array}} \right..\]
Consider the composition of f and g i.e. (fog) (x) = f(g(x)). The number of discontinuities in (fog) (x) present in the interval (\[ - \infty ,\] 0) is:
A. 0
B. 1
C. 2
D. 4
Answer: Option A
Related Questions on Calculus
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion