Let δ(t) denote the delta function. The value of the integral $$\int\limits_{ - \infty }^\infty {\delta \left( t \right)} \cos \left( {{{3t} \over 2}} \right)dt$$ is
A. 1
B. -1
C. 0
D. $${\pi \over 2}$$
Answer: Option A
A. 1
B. -1
C. 0
D. $${\pi \over 2}$$
Answer: Option A
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β
Join The Discussion