Let the input be u and the output be y of a system, and the other parameters are real constants. Identify which among the following systems is not a linear system :
A. $$\frac{{{d^3}y}}{{d{t^3}}} + {a_1}\frac{{{d^2}y}}{{d{t^2}}} + {a_2}\frac{{dy}}{{dt}} + {a_3}y$$ $$ = {b_3}u + {b_2}\frac{{du}}{{dt}} + {b_1}\frac{{{d^2}u}}{{d{t^2}}}$$ (with initial rest conditions)
B. $$y\left( t \right) = \int\limits_0^t {{e^{\alpha \left( {t - \tau } \right)}}} \beta u\left( \tau \right)d\tau $$
C. y = au + b, b ≠ 0
D. y = au
Answer: Option C
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion