Let the input be u and the output be y of a system, and the other parameters are real constants. Identify which among the following systems is not a linear system :
A. $$\frac{{{d^3}y}}{{d{t^3}}} + {a_1}\frac{{{d^2}y}}{{d{t^2}}} + {a_2}\frac{{dy}}{{dt}} + {a_3}y$$ $$ = {b_3}u + {b_2}\frac{{du}}{{dt}} + {b_1}\frac{{{d^2}u}}{{d{t^2}}}$$ (with initial rest conditions)
B. $$y\left( t \right) = \int\limits_0^t {{e^{\alpha \left( {t - \tau } \right)}}} \beta u\left( \tau \right)d\tau $$
C. y = au + b, b ≠ 0
D. y = au
Answer: Option C
Join The Discussion