Let $$x = \frac{{5\frac{3}{4} - \frac{3}{7} \times 15\frac{3}{4} + 2\frac{2}{{35}} \div 1\frac{{11}}{{25}}}}{{\frac{3}{4} \div 5\frac{1}{4} + 5\frac{3}{5} \div 3\frac{4}{{15}}}}.$$ When y is added to x, the result is $$\frac{7}{{13}}.$$ What is the value of y?
A. $$\frac{9}{{13}}$$
B. $$\frac{4}{{13}}$$
C. $$\frac{1}{{13}}$$
D. $$\frac{2}{{13}}$$
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & x = \frac{{5\frac{3}{4} - \frac{3}{7} \times 15\frac{3}{4} + 2\frac{2}{{35}} \div 1\frac{{11}}{{25}}}}{{\frac{3}{4} \div 5\frac{1}{4} + 5\frac{3}{5} \div 3\frac{4}{{15}}}} \cr & x = \frac{{\frac{{23}}{4} - \frac{3}{7} \times \frac{{63}}{4} + \frac{{72}}{{35}} \div \frac{{36}}{{25}}}}{{\frac{3}{4} \div \frac{{21}}{4} + \frac{{28}}{5} \div \frac{{49}}{{15}}}} \cr & x = \frac{{\frac{{23}}{4} - \frac{{27}}{4} + \frac{{10}}{7}}}{{\frac{1}{7} + \frac{{12}}{7}}} \cr & x = \frac{{ - \frac{4}{4} + \frac{{10}}{7}}}{{\frac{{13}}{7}}} \cr & x = \frac{{\frac{{ - 7 + 10}}{7}}}{{\frac{{13}}{7}}} \cr & x = \frac{3}{{13}} \cr & x + y = \frac{7}{{13}} \cr & y = \frac{7}{{13}} - \frac{3}{{13}} \cr & y = \frac{4}{{13}} \cr} $$Related Questions on Simplification
A. 20
B. 80
C. 100
D. 200
E. None of these
A. Rs. 3500
B. Rs. 3750
C. Rs. 3840
D. Rs. 3900
E. None of these
Join The Discussion