Let x and y be two vectors in a 3 dimensional space and <x, y> denote their dot product. Then the determinant det \[\left[ {\begin{array}{*{20}{c}} { < {\text{x}},{\text{x}} > }&{ < {\text{x}},{\text{y}} > } \\ { < {\text{y}},{\text{x}} > }&{ < {\text{y}},{\text{y}} > } \end{array}} \right].\]
A. is zero when x and y are linearly independent
B. is positive when x and yare linearly independent
C. is non-zero for all non-zero x and y
D. is zero only when either x or y is zero
Answer: Option B
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion