Let $$X\left( {{e^{j\omega }}} \right) = \sum\nolimits_{n = - \infty }^\infty {x\left[ n \right]{e^{ - j\omega n}}} $$ and $$x\left[ n \right] = \frac{1}{{2\pi }}\int\limits_{ - \pi }^\pi {X\left( {{e^{j\omega }}} \right){e^{j\omega n}}d\omega } .$$
If $$X\left( {{e^{j\omega }}} \right) = \frac{1}{{\left( {1 - 0.2{e^{ - j\omega }}} \right)\left( {1 - 0.1{e^{ - j\omega }}} \right)}},$$ what is x[n] in terms of unit discrete step function u(n)?
A. 2(0.2)n u(n) - (0.1)n u(n)
B. 2(0.1)n u(n) - (0.2)n u(n)
C. (0.2)n u(n) - (0.1)n u(n)
D. (0.1)n u(n) - (0.2)n u(n)
Answer: Option A
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion