Let \[{x_1}\left( t \right) = \left\{ {\begin{array}{*{20}{c}} 6&{{\text{for }}0 < t < 4} \\ 0&{{\text{otherwise}}} \end{array}} \right.{\text{and }}{x_2}\left( t \right) = u\left( {t - 2} \right)\] and y(t) = x1(t) * x2(t), then the value of y(4) is
A. 4
B. 8
C. 12
D. 24
Answer: Option C
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β
Join The Discussion