Let $$x\left( n \right) = {\left( {\frac{1}{2}} \right)^n}u\left( n \right),y\left( n \right) = {x^2}\left( n \right)$$ and y(ejω) be the Fourier transform of y(n). Then Y(ej0) is
A. $$\frac{1}{4}$$
B. 2
C. 4
D. $$\frac{4}{3}$$
Answer: Option D
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion