Let x(t) be a continuous time periodic signal with fundamental period T = 1 seconds. Let {ak} be the complex Fourier series coefficients of x(t), where k is integer valued. Consider the following statements about x(3t):
1. The complex Fourier series coefficients of x(3t) are {ak} where k is integer valued.
2. The complex Fourier series coefficients of x(3f) are {3ak} where k is integer valued.
3. The fundamental angular frequency of x(3t) is 6π rad/s.
For the three statements above, which one of the following is correct?
A. Only 2 and 3 are true
B. Only 1 and 3 are true
C. Only 3 is true
D. Only 1 is true
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion