Let x(t) be a periodic function with period T = 10. The Fourier series coefficients for this series are denoted by $${a_k}$$ , that is
$$x\left( t \right) = \sum\limits_{k = - \infty }^\infty {{a_k}{e^{jk{{2\pi } \over T}t}}} .$$
The same function x(t) can also be considered as a periodic function with period T' = 40. Let bk be the Fourier series coefficients when period is taken as T'. If $$\sum\limits_{k = - \infty }^\infty {\left| {{a_k}} \right|} = 16,$$ then $$\sum\limits_{k = - \infty }^\infty {\left| {{b_k}} \right|} $$ is equal to
A. 256
B. 64
C. 16
D. 4
Answer: Option C
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion