Let x(t) be a periodic function with period T = 10. The Fourier series coefficients for this series are denoted by $${a_k}$$ , that is
$$x\left( t \right) = \sum\limits_{k = - \infty }^\infty {{a_k}{e^{jk{{2\pi } \over T}t}}} .$$
The same function x(t) can also be considered as a periodic function with period T' = 40. Let bk be the Fourier series coefficients when period is taken as T'. If $$\sum\limits_{k = - \infty }^\infty {\left| {{a_k}} \right|} = 16,$$ then $$\sum\limits_{k = - \infty }^\infty {\left| {{b_k}} \right|} $$ is equal to
A. 256
B. 64
C. 16
D. 4
Answer: Option C
Join The Discussion