Let x(t) be a wide sense stationary (WSS) random with power spectral density Sx(f). If Y(t) is the process defined as y(t) = x(2t - 1), the power spectral density SY(f) is
A. $${S_Y}\left( f \right) = {1 \over 2}{S_X}\left( {{f \over 2}} \right){e^{ - j\pi t}}$$
B. $${S_Y}\left( f \right) = {1 \over 2}{S_X}\left( {{f \over 2}} \right){e^{ - {{j\pi t} \over 2}}}$$
C. $${S_Y}\left( f \right) = {1 \over 2}{S_X}\left( {{f \over 2}} \right)$$
D. $${S_Y}\left( f \right) = {1 \over 2}{S_X}\left( {{f \over 2}} \right){e^{j2\pi f}}$$
Answer: Option C
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion