Examveda

Let x(t) be a wide sense stationary (WSS) random with power spectral density Sx(f). If Y(t) is the process defined as y(t) = x(2t - 1), the power spectral density SY(f) is

A. $${S_Y}\left( f \right) = {1 \over 2}{S_X}\left( {{f \over 2}} \right){e^{ - j\pi t}}$$

B. $${S_Y}\left( f \right) = {1 \over 2}{S_X}\left( {{f \over 2}} \right){e^{ - {{j\pi t} \over 2}}}$$

C. $${S_Y}\left( f \right) = {1 \over 2}{S_X}\left( {{f \over 2}} \right)$$

D. $${S_Y}\left( f \right) = {1 \over 2}{S_X}\left( {{f \over 2}} \right){e^{j2\pi f}}$$

Answer: Option C


Join The Discussion

Related Questions on Signal Processing