Let x(t) ↔ X(jω) be Fourier Transform pair. The Fourier Transform of the signal x(5t - 3) in terms of X(jω) is given as
A. $$\frac{1}{5}{e^{\frac{{ - j3\omega }}{5}}}X\left( {\frac{{j\omega }}{5}} \right)$$
B. $$\frac{1}{5}{e^{\frac{{j3\omega }}{5}}}X\left( {\frac{{j\omega }}{5}} \right)$$
C. $$\frac{1}{5}{e^{ - j3\omega }}X\left( {\frac{{j\omega }}{5}} \right)$$
D. $$\frac{1}{5}{e^{j3\omega }}X\left( {\frac{{j\omega }}{5}} \right)$$
Answer: Option A
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion