Letx(t) be the input and y(t) be the output of a continuous time system. Match the system properties P1, P2 and P3 with system relations R1, R2, P3, P4.
Properties
P1 : Linear but NOT time-invariant
P2 : Time-invariant but NOT linear
P3 : Linear and time-invariant
Relations
R1 : y(t) = t2x(t)
R2 : y(t) = t |x(t)|
R3 : y(t) = |x(t)|
R4 : y(t) = x(t - 5)
A. (P1, R1), (P2, R3), (P3, R4)
B. (P1, R2), (P2, P3), (P3, R4)
C. (P1, R3), (P2, R1), (P3, R2)
D. (P1, R1), (P2, R2), (P3, R3)
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion