Mass velocity in case of steady flow and through a constant cross-section conduit is independent of the
A. Temperature
B. Pressure
C. Both A & B
D. Neither A nor B
Answer: Option C
A. Temperature
B. Pressure
C. Both A & B
D. Neither A nor B
Answer: Option C
A. Thermal conductivity
B. Electrical conductivity
C. Specific gravity
D. Electrical resistivity
A. $$\frac{{\text{V}}}{{{{\text{V}}_{\max }}}} = {\left( {\frac{{\text{x}}}{{\text{r}}}} \right)^{\frac{1}{7}}}$$
B. $$\frac{{\text{V}}}{{{{\text{V}}_{\max }}}} = {\left( {\frac{{\text{r}}}{{\text{x}}}} \right)^{\frac{1}{7}}}$$
C. $$\frac{{\text{V}}}{{{{\text{V}}_{\max }}}} = {\left( {{\text{x}} \times {\text{r}}} \right)^{\frac{1}{7}}}$$
D. None of these
A. d
B. $$\frac{1}{{\text{d}}}$$
C. $$\sigma $$
D. $$\frac{l}{\sigma }$$
A. $$\frac{{4\pi {\text{g}}}}{3}$$
B. $$\frac{{0.01\pi {\text{gH}}}}{4}$$
C. $$\frac{{0.01\pi {\text{gH}}}}{8}$$
D. $$\frac{{0.04\pi {\text{gH}}}}{3}$$
Let's clarify:
Mass velocity
𝐺
=
𝜌
×
𝑉
G=ρ×V (density × velocity).
In steady flow through a constant cross-section, velocity
𝑉
V is constant.
Density
𝜌
ρ depends on pressure and temperature, especially for gases.
So mass velocity depends on both pressure and temperature.
Thus, mass velocity is not independent of temperature or pressure.
Correct answer:
D. Neither A nor B