Match List-I with List-II and select the correct answer using the options given below:
| List-I [Function in time domain f(t)] | List-II [Property] |
| a. $$\sin {\omega _0}tu\left( {t - {t_0}} \right)$$ | 1. $$\frac{{{\omega _0}}}{{{s^2} + \omega _0^2}}$$ |
| b. $$\sin {\omega _0}\left( {t - {t_0}} \right)u\left( {t - {t_0}} \right)$$ | 2. $$\left\{ {\frac{{{\omega _0}}}{{{s^2} + \omega _0^2}}} \right\}{e^{ - {t_0}s}}$$ |
| c. $$\sin {\omega _0}\left( {t - {t_0}} \right)u\left( t \right)$$ | 3. $$\frac{{{e^{ - {t_0}s}}}}{{\sqrt {{s^2} + \omega _0^2} }}\sin \left( {{\omega _0}{t_0} + {{\tan }^{ - 1}}\frac{{{\omega _0}}}{s}} \right)$$ |
| d. $$\sin {\omega _0}tu\left( t \right)$$ | 4. $$ - \frac{1}{{\sqrt {{s^2} + \omega _0^2} }}\sin \left( {{\omega _0}{t_0} - {{\tan }^{ - 1}}\frac{{{\omega _0}}}{s}} \right)$$ |
A. a-3, b-1, c-4, d-2
B. a-4, b-2, c-3, d-1
C. a-3, b-2, c-4, d-1
D. a-4, b-1, c-3, d-2
Answer: Option C
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion