Match List-I with List-II and select the correct answer using the options given below:
| List-I (Function) | List-II (Fourier Transforms) |
| a. $$\exp \left( { - \alpha t} \right)u\left( t \right),\,\alpha > 0$$ | 1. $$\frac{1}{{{{\left( {\alpha + j2\pi f} \right)}^2}}}$$ |
| b. $$\exp \left( { - \alpha \left| t \right|} \right),\,\alpha > 0$$ | 2. $$\frac{1}{{\alpha + j2\pi f}}$$ |
| c. $${\text{texp}}\left( { - \alpha t} \right)u\left( t \right),\,\alpha > 0$$ | 3. $$\delta \left( {f - \frac{\alpha }{{{t_0}}}} \right)$$ |
| d. $$\exp \left( {j2\pi \alpha t/{t_0}} \right)$$ | 4. $$\frac{{2\alpha }}{{{\alpha ^2} + {{\left( {2\pi f} \right)}^2}}}$$ |
A. a-3, b-1, c-4, d-2
B. a-2, b-4, c-1, d-3
C. a-3, b-4, c-1, d-2
D. a-2, b-1, c-4, d-3
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion