Match List-I with List-II and select the correct answer using the options given below:
| List-I | List-II |
| a. $${\alpha ^n}u\left( n \right)$$ | 1. $$\frac{{\alpha {z^{ - 1}}}}{{{{\left( {1 - \alpha {z^{ - 1}}} \right)}^2}}}{\text{ROC}}:\left| z \right| > \left| \alpha \right|$$ |
| b. $$ - {\alpha ^n}u\left( { - n - 1} \right)$$ | 2. $$\frac{1}{{\left( {1 - \alpha {z^{ - 1}}} \right)}}{\text{ROC}}:\left| z \right| > \left| \alpha \right|$$ |
| c. $$ - n{\alpha ^n}u\left( { - n - 1} \right)$$ | 3. $$\frac{1}{{\left( {1 - \alpha {z^{ - 1}}} \right)}}{\text{ROC}}:\left| z \right| < \left| \alpha \right|$$ |
| d. $$n{\alpha ^n}u\left( n \right)$$ | 4. $$\frac{{\alpha {z^{ - 1}}}}{{{{\left( {1 - \alpha {z^{ - 1}}} \right)}^2}}}{\text{ROC}}:\left| z \right| < \left| \alpha \right|$$ |
A. a-2, b-4, c-3, d-1
B. a-1, b-3, c-4, d-2
C. a-1, b-4, c-2, d-3
D. a-2, b-3, c-4, d-1
Answer: Option D
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion