Examveda

Match List-I with List-II in regard to Fourier series of periodic f(t) and select the correct answer using the options given below:
List-I (Properties) List-II (Characteristics of the trigonometric form)
a. f(t) + f(-t) = 0 1. Even harmonics can exist
b. f(t) - f(-t) = 0 2. Odd harmonics can exist
c. $${\text{f}}\left( {\text{t}} \right) + {\text{f}}\left( {{\text{t}} - \frac{{\text{T}}}{2}} \right) = 0$$     3. The dc and cosine terms can exist
d. $${\text{f}}\left( {\text{t}} \right) - {\text{f}}\left( {{\text{t}} - \frac{{\text{T}}}{2}} \right) = 0$$ 4. sine terms can exist
5. cosine terms of even harmonics can exist

A. a-4, b-5, c-3, d-1

B. a-3, b-4, c-1, d-2

C. a-5, b-4, c-2, d-3

D. a-4, b-3, c-2, d-1

Answer: Option D


Join The Discussion

Related Questions on Signal Processing