Match List-I with List-II in regard to Fourier series of periodic f(t) and select the correct answer using the options given below:
| List-I (Properties) | List-II (Characteristics of the trigonometric form) |
| a. f(t) + f(-t) = 0 | 1. Even harmonics can exist |
| b. f(t) - f(-t) = 0 | 2. Odd harmonics can exist |
| c. $${\text{f}}\left( {\text{t}} \right) + {\text{f}}\left( {{\text{t}} - \frac{{\text{T}}}{2}} \right) = 0$$ | 3. The dc and cosine terms can exist |
| d. $${\text{f}}\left( {\text{t}} \right) - {\text{f}}\left( {{\text{t}} - \frac{{\text{T}}}{2}} \right) = 0$$ | 4. sine terms can exist |
| 5. cosine terms of even harmonics can exist |
A. a-4, b-5, c-3, d-1
B. a-3, b-4, c-1, d-2
C. a-5, b-4, c-2, d-3
D. a-4, b-3, c-2, d-1
Answer: Option D
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion