Multiplication of matrices E and F is G. Matrices E and G are \[{\text{E}} \equiv \left[ {\begin{array}{*{20}{c}}
{\cos \theta }&{ - \sin \theta }&0 \\
{\sin \theta }&{\cos \theta }&0 \\
0&0&1
\end{array}} \right]{\text{and G}} \equiv \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right].\]
What is the matrix F?
A. \[\left[ {\begin{array}{*{20}{c}} {\cos \theta }&{ - \sin \theta }&0 \\ {\sin \theta }&{\cos \theta }&0 \\ 0&0&1 \end{array}} \right]\]
B. \[\left[ {\begin{array}{*{20}{c}} {\cos \theta }&{\cos \theta }&0 \\ { - \cos \theta }&{\sin \theta }&0 \\ 0&0&1 \end{array}} \right]\]
C. \[\left[ {\begin{array}{*{20}{c}} {\cos \theta }&{\sin \theta }&0 \\ { - \sin \theta }&{\cos \theta }&0 \\ 0&0&1 \end{array}} \right]\]
D. \[\left[ {\begin{array}{*{20}{c}} {\sin \theta }&{ - \cos \theta }&0 \\ {\cos \theta }&{\sin \theta }&0 \\ 0&0&1 \end{array}} \right]\]
Answer: Option C
Join The Discussion