$$\overrightarrow {\text{a}} ,\,\overrightarrow {\text{b}} ,\,\overrightarrow {\text{c}} $$ are three orthogonal vectors, Given that \[\overrightarrow {\rm{a}} = {\rm{\hat i}} + 2{\rm{\hat j}} + 5{\rm{\hat k}}\] and \[\overrightarrow {\rm{b}} = {\rm{\hat i}} + 2{\rm{\hat j}} - {\rm{\hat k}}\] , the vector $$\,\overrightarrow {\text{c}} $$ is parallel to
A. \[{\rm{\hat i}} + 2{\rm{\hat j}} + 3{\rm{\hat k}}\]
B. \[{\rm{2\hat i}} + {\rm{\hat j}}\]
C. \[{\rm{2\hat i}} - {\rm{\hat j}}\]
D. \[4{\rm{\hat k}}\]
Answer: Option C
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion