Reynolds number for flow of water at room temperature through 2 cm dia pipe at an average velocity of 5 cm/sec is around
A. 2000
B. 10
C. 100
D. 1000
Answer: Option D
Solution (By Examveda Team)
Reynolds number (Re) is a dimensionless quantity used in fluid mechanics to predict whether the flow will be laminar or turbulent.It's calculated using this formula: Re = (Density * Velocity * Diameter) / Viscosity
For water at room temperature, we can use approximate values:
Density (ρ) ≈ 1 g/cm³
Viscosity (μ) ≈ 0.01 g/(cm·s)
Let's plug in the given values from the question:
Diameter (D) = 2 cm
Velocity (V) = 5 cm/s
Therefore:
Re = (1 g/cm³ * 5 cm/s * 2 cm) / (0.01 g/(cm·s))
Re = 1000
Therefore, the Reynolds number is approximately 1000. This indicates a flow that is likely to be in the transition zone between laminar and turbulent flow.
Join The Discussion
Comments (3)
Related Questions on Fluid Mechanics
A. Thermal conductivity
B. Electrical conductivity
C. Specific gravity
D. Electrical resistivity
A. $$\frac{{\text{V}}}{{{{\text{V}}_{\max }}}} = {\left( {\frac{{\text{x}}}{{\text{r}}}} \right)^{\frac{1}{7}}}$$
B. $$\frac{{\text{V}}}{{{{\text{V}}_{\max }}}} = {\left( {\frac{{\text{r}}}{{\text{x}}}} \right)^{\frac{1}{7}}}$$
C. $$\frac{{\text{V}}}{{{{\text{V}}_{\max }}}} = {\left( {{\text{x}} \times {\text{r}}} \right)^{\frac{1}{7}}}$$
D. None of these
A. d
B. $$\frac{1}{{\text{d}}}$$
C. $$\sigma $$
D. $$\frac{l}{\sigma }$$
A. $$\frac{{4\pi {\text{g}}}}{3}$$
B. $$\frac{{0.01\pi {\text{gH}}}}{4}$$
C. $$\frac{{0.01\pi {\text{gH}}}}{8}$$
D. $$\frac{{0.04\pi {\text{gH}}}}{3}$$

Must
Mujhe 100 aa Raha hai koi solutions batao
Tell me the solution pla