$$\frac{{{a^2} - {b^2} - 2bc - {c^2}}}{{{a^2} + {b^2} + 2ab - {c^2}}}$$ is equivalent to = ?
A. $$\frac{{a - b + c}}{{a + b + c}}$$
B. $$\frac{{a - b - c}}{{a - b + c}}$$
C. $$\frac{{a - b - c}}{{a + b - c}}$$
D. $$\frac{{a + b + c}}{{a - b + c}}$$
Answer: Option C
Solution(By Examveda Team)
$$\eqalign{
& \frac{{{a^2} - {b^2} - 2bc - {c^2}}}{{{a^2} + {b^2} + 2ab - {c^2}}}\, \cr
& = \frac{{{a^2} - ({b^2} + 2bc + {c^2})}}{{({a^2} + {b^2} + 2ab) - {c^2}}} \cr
& = \frac{{{a^2} - {{(b + c)}^2}}}{{{{(a + b)}^2} - {c^2}}} \cr
& = \frac{{\left( {a + b + c} \right)\left( {a - b - c} \right)}}{{\left( {a + b + c} \right)\left( {a + b - c} \right)}} \cr
& = \frac{{a - b - c}}{{a + b - c}} \cr} $$
Join The Discussion