If $$a = \frac{x}{{x + y}}$$ and $$b = \frac{y}{{x - y}}{\text{,}}$$ then $$\frac{{ab}}{{a + b}}$$ is equal to = ?
A. $$\frac{{xy}}{{{x^2} + {y^2}}}$$
B. $$\frac{{{x^2} + {y^2}}}{{xy}}$$
C. $$\frac{x}{{x + y}}$$
D. $${\left( {\frac{y}{{x + y}}} \right)^2}$$
Answer: Option A
Solution(By Examveda Team)
$$\eqalign{
& \frac{{ab}}{{a + b}} = \frac{{\frac{x}{{x + y}} \times \frac{y}{{x - y}}}}{{\frac{x}{{x + y}} + \frac{y}{{x - y}}}} \cr
& \frac{{ab}}{{a + b}} = \frac{{\frac{{xy}}{{{x^2} - {y^2}}}}}{{\frac{{x\left( {x - y} \right) + y\left( {x + y} \right)}}{{{x^2} - {y^2}}}}} \cr
& \frac{{ab}}{{a + b}} = \frac{{xy}}{{{x^2} + {y^2}}} \cr} $$
Join The Discussion