$$\eqalign{ & {\text{If}} \cr & {\text{I = }}\frac{3}{4} \div \frac{5}{6}{\text{,}} \cr & {\text{II = 3}} \div \left[ {\left( {4 \div 5} \right) \div 6} \right]{\text{,}} \cr & {\text{III = }}\left[ {{\text{3}} \div \left( {4 \div 5} \right)} \right] \div {\text{6,}} \cr & {\text{IV = 3}} \div {\text{4}} \div \left( {5 \div 6} \right), \cr & {\text{Then - }} \cr} $$
A. I and II are equal
B. I and III are equal
C. I and IV are equal
D. All are equal
Answer: Option C
Solution (By Examveda Team)
$$\eqalign{ & {\text{I = }}\frac{3}{4} \div \frac{5}{6} \cr & \,\,\,\, = \frac{3}{4} \times \frac{6}{5} \cr & \,\,\,\, = \frac{9}{{10}} \cr & {\text{II = 3}} \div \left[ {\left( {4 \div 5} \right) \div 6} \right] \cr & \,\,\,\,\,\, = 3 \div \left( {\frac{4}{5} \times \frac{1}{6}} \right) \cr & \,\,\,\,\,\, = 3 \div \frac{4}{{30}} \cr & \,\,\,\,\,\, = 3 \times \frac{{30}}{4} \cr & \,\,\,\,\,\, = \frac{{45}}{2} \cr & {\text{III = }}\left[ {3 \div \left( {4 \div 5} \right)} \right] \div {\text{6}} \cr & \,\,\,\,\,\,\,\,{\text{ = }}\left[ {3 \div \frac{4}{5}} \right] \div 6 \cr & \,\,\,\,\,\,\,\, = \left[ {3 \times \frac{5}{4}} \right] \div 6 \cr & \,\,\,\,\,\,\,\, = \frac{{15}}{4} \times \frac{1}{6} \cr & \,\,\,\,\,\,\,\, = \frac{5}{8} \cr & {\text{IV = 3}} \div 4 \div \left( {5 \div 6} \right) \cr & \,\,\,\,\,\,\,\, = 3 \div 4 \div \frac{5}{6} \cr & \,\,\,\,\,\,\,\, = \frac{3}{4} \times \frac{6}{5} \cr & \,\,\,\,\,\,\,\, = \frac{9}{{10}} \cr & {\text{So, I and IV are equal}}{\text{.}} \cr} $$Related Questions on Simplification
A. 20
B. 80
C. 100
D. 200
E. None of these
A. Rs. 3500
B. Rs. 3750
C. Rs. 3840
D. Rs. 3900
E. None of these

Join The Discussion