$$\sqrt {\frac{{4\frac{1}{7} - 2\frac{1}{4}}}{{3\frac{1}{2} + 1\frac{1}{7}}} \div \frac{1}{{2 + \frac{1}{{2 + \frac{1}{{5 - \frac{1}{5}}}}}}}} $$ is equal to = ?
A. 1
B. 4
C. 3
D. 2
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & {\text{Take first part }} \cr & \frac{{4\frac{1}{7} - 2\frac{1}{4}}}{{3\frac{1}{2} + 1\frac{1}{7}}} \cr & = \frac{{\frac{{29}}{7} - \frac{9}{4}}}{{\frac{7}{2} + \frac{8}{7}}} \cr & = \frac{{\frac{{116 - 63}}{{28}}}}{{\frac{{49 + 16}}{{14}}}} \cr & = \frac{{53}}{{28}} \times \frac{{14}}{{65}} \cr & = \frac{{53}}{{130}} \cr & {\text{The second part}} \cr & \frac{1}{{2 + \frac{1}{{2 + \frac{1}{{5 - \frac{1}{5}}}}}}} \cr & = \frac{1}{{2 + \frac{1}{{2 + \frac{1}{{\frac{{25 - 1}}{5}}}}}}} \cr & = \frac{1}{{2 + \frac{1}{{2 + \frac{5}{{24}}}}}} \cr & = \frac{1}{{2 + \frac{1}{{\frac{{53}}{{24}}}}}} \cr & = \frac{1}{{2 + \frac{{24}}{{53}}}} \cr & = \frac{1}{{\frac{{106 + 24}}{{53}}}} \cr & = \frac{{53}}{{130}} \cr & {\text{According to question,}} \cr & \,\,\,\,\,\,\sqrt {\frac{{53}}{{130}} \div \frac{{53}}{{130}}} \cr & = \sqrt {\frac{{53}}{{130}} \times \frac{{130}}{{53}}} \cr & = \sqrt 1 \cr & = 1 \cr} $$Related Questions on Simplification
A. 20
B. 80
C. 100
D. 200
E. None of these
A. Rs. 3500
B. Rs. 3750
C. Rs. 3840
D. Rs. 3900
E. None of these

Join The Discussion