$${\left( {\frac{{\sin \theta - 2{{\sin }^3}\theta }}{{2{{\cos }^3} - \cos \theta }}} \right)^2} + 1,$$ θ ≠ 45° is equal to:
A. cosec2θ
B. sec2θ
C. cot2θ
D. 2tan2θ
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & {\left( {\frac{{\sin \theta - 2{{\sin }^3}\theta }}{{2{{\cos }^3} - \cos \theta }}} \right)^2} + 1 \cr & = \frac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}{\left( {\frac{{{{\cos }^2}\theta }}{{{{\cos }^2}\theta }}} \right)^2} + 1 \cr & = {\tan ^2}\theta + 1 \cr & = {\sec ^2}\theta \cr} $$Related Questions on Trigonometry
A. x = -y
B. x > y
C. x = y
D. x < y

Join The Discussion