Examveda sinθ = 0.7 then cosθ, 0 ≤ θ < 90° is? A. 0.3B. $$\sqrt {0.49} $$C. $$\sqrt {0.51} $$D. $$\sqrt {0.9} $$Answer: Option C Solution (By Examveda Team) $$\eqalign{ & \sin \theta = 0.7 \cr & \Rightarrow {\sin ^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1 \cr & \Rightarrow {\left( {0.7} \right)^2} + {\text{co}}{{\text{s}}^2}\theta = 1 \cr & \Rightarrow 0.49 + {\text{co}}{{\text{s}}^2}\theta = 1 \cr & \Rightarrow {\text{co}}{{\text{s}}^2}\theta = 1 - 0.49 \cr & \Rightarrow {\text{cos}}\theta = \sqrt {0.51} \cr} $$ This Question Belongs to Arithmetic Ability >> Trigonometry
Solution (By Examveda Team) $$\eqalign{ & \sin \theta = 0.7 \cr & \Rightarrow {\sin ^2}\theta + {\text{co}}{{\text{s}}^2}\theta = 1 \cr & \Rightarrow {\left( {0.7} \right)^2} + {\text{co}}{{\text{s}}^2}\theta = 1 \cr & \Rightarrow 0.49 + {\text{co}}{{\text{s}}^2}\theta = 1 \cr & \Rightarrow {\text{co}}{{\text{s}}^2}\theta = 1 - 0.49 \cr & \Rightarrow {\text{cos}}\theta = \sqrt {0.51} \cr} $$
The equation $${\cos ^2}\theta $$ = $$\frac{{{{\left( {x + y} \right)}^2}}}{{4xy}}$$ is only possible when ? A. x = -yB. x > yC. x = yD. x < y View Answer
Join The Discussion