Examveda

The 2s-orbital of H-atom has a radial node at 2a0 because $${\psi _{2s}}$$ is proportional to

A. $$\left( {\frac{1}{2} + \frac{r}{{{a_0}}}} \right)$$

B. $$\left( {2 + \frac{r}{{{a_0}}}} \right)$$

C. $$\left( {2 - \frac{r}{{{a_0}}}} \right)$$

D. $$\left( {2 - \frac{r}{{2{a_0}}}} \right)$$

Answer: Option C


This Question Belongs to Engineering Chemistry >> Atomic Structure

Join The Discussion

Related Questions on Atomic Structure

The vibrational partition function for a molecule which can be described as a simple harmonic oscillator with fundamental frequency $$\nu $$ is given by

A. $$\exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right)$$

B. $${\left[ {1 - \exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right)} \right]^{ - 1}}$$

C. $$\exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right){\left[ {1 - \exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right)} \right]^{ - 1}}$$

D. $$\exp \left( { - \frac{{h\nu }}{{2{K_B}T}}} \right){\left[ {1 - \exp \left( { - \frac{{h\nu }}{{{K_B}T}}} \right)} \right]^{ - 1}}$$