The 4-point discrete Fourier Transform (DFT) of a discrete time sequence {1, 0, 2, 3} is
A. {0, -2 + 2j, 2, -2 - 2j}
B. {2, 2 + 2j, 6, 2 - 2j}
C. {6, 1 - 3j, 2, 1 + 3j}
D. {6, -1 + 3j, 0, -1 - 3j}
Answer: Option D
A. {0, -2 + 2j, 2, -2 - 2j}
B. {2, 2 + 2j, 6, 2 - 2j}
C. {6, 1 - 3j, 2, 1 + 3j}
D. {6, -1 + 3j, 0, -1 - 3j}
Answer: Option D
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β
Join The Discussion