The area of a triangle formed by the tips of vectors \[\overline {\rm{a}} {\rm{,}}\,\overline {\rm{b}} \] and \[\overline {\rm{c}} \] is
A. \[\frac{1}{2}\left( {\overline {\rm{a}} - \overline {\rm{b}} } \right) \cdot \left( {\overline {\rm{a}} - \overline {\rm{c}} } \right)\]
B. \[\frac{1}{2}\left| {\left( {\overline {\rm{a}} - \overline {\rm{b}} } \right) \times \left( {\overline {\rm{a}} - \overline {\rm{c}} } \right)} \right|\]
C. \[\frac{1}{2}\left| {\overline {\rm{a}} \times \overline {\rm{b}} \times \overline {\rm{c}} } \right|\]
D. \[\frac{1}{2}\left( {\overline {\rm{a}} \times \overline {\rm{b}} } \right) \cdot \overline {\rm{c}} \]
Answer: Option B
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion