Examveda

The bilateral Laplace transform of $${e^t}\cos 2tu\left( { - t} \right) + {e^{ - t}}u\left( t \right) + {e^{\frac{t}{2}}}u\left( t \right)$$      is

A. $$\frac{{1 - s}}{{{{\left( {s - 1} \right)}^2} + 4}} + \frac{1}{{s + 1}} + \frac{1}{{s - 0.5}},\,0.5 < \operatorname{Re} \left( s \right) < 1$$

B. $$\frac{{1 - s}}{{{{\left( {s - 1} \right)}^2} + 4}} + \frac{1}{{s + 1}} + \frac{1}{{s - 0.5}},\, - 1 < \operatorname{Re} \left( s \right) < 1$$

C. $$\frac{{s - 1}}{{{{\left( {s - 1} \right)}^2} + 4}} + \frac{1}{{s + 1}} + \frac{1}{{s - 0.5}},\,0.5 < \operatorname{Re} \left( s \right) < 1$$

D. $$\frac{{s - 1}}{{{{\left( {s - 1} \right)}^2} + 4}} + \frac{1}{{s + 1}} + \frac{1}{{s - 0.5}},\, - 1 < \operatorname{Re} \left( s \right) < 1$$

Answer: Option A


This Question Belongs to Engineering Maths >> Transform Theory

Join The Discussion

Related Questions on Transform Theory