The Butterworth filter of order n is described by the magnitude squared of its frequency response given by $${\left| {{H_n}\left( {j\Omega } \right)} \right|^2} = \frac{1}{{\left[ {1 + {{\left( {\frac{\Omega }{{{\Omega _{\,C}}}}} \right)}^{2n}}} \right]}}.$$ The value of $$20\log \left| {{H_n}\left( {j\Omega } \right)} \right|$$ at $$\Omega = {\Omega _{\,C}}$$ is
A. -2 dB
B. -3.01 dB
C. -3 dB
D. -3.5 dB
Answer: Option B
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion