The complex envelope of the bandpass signal $$x\left( t \right) = \sqrt 2 \left( {{{\sin \left( {{{\pi t} \over 5}} \right)} \over {{{\pi t} \over 5}}}} \right)\sin \left( {\pi t - {\pi \over 4}} \right),$$ centered about $$f = {1 \over 2}Hz,$$ is
A. $$\left( {{{\sin \left( {{{\pi t} \over 5}} \right)} \over {{{\pi t} \over 5}}}{e^{j{\pi \over 4}}}} \right)$$
B. $$\left( {{{\sin \left( {{{\pi t} \over 5}} \right)} \over {{{\pi t} \over 5}}}{e^{ - j{\pi \over 4}}}} \right)$$
C. $$\sqrt 2 \left( {{{\sin \left( {{{\pi t} \over 5}} \right)} \over {{{\pi t} \over 5}}}{e^{j{\pi \over 4}}}} \right)$$
D. $$\sqrt 2 \left( {{{\sin \left( {{{\pi t} \over 5}} \right)} \over {{{\pi t} \over 5}}}{e^{ - j{\pi \over 4}}}} \right)$$
Answer: Option C
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion