The complex number $${\left( {\frac{{2 + {\text{i}}}}{{3 - {\text{i}}}}} \right)^2}$$ is
A. $$\frac{1}{2}\left( {\cos \frac{\pi }{4} + {\text{i}}\sin \frac{\pi }{4}} \right)$$
B. $$\frac{1}{2}\left( {\cos \frac{\pi }{2} + {\text{i}}\sin \frac{\pi }{2}} \right)$$
C. $$\frac{1}{2}\left( {\cos \pi + {\text{i}}\sin \pi } \right)$$
D. $$\frac{1}{2}\left( {\cos \frac{\pi }{6} + {\text{i}}\sin \frac{\pi }{6}} \right)$$
Answer: Option B
A. -x2 + y2 + constant
B. x2 - y2 + constant
C. x2 + y2 + constant
D. -(x2 + y2) + constant
The product of complex numbers (3 - 2i) and (3 + i4) results in
A. 1 + 6i
B. 9 - 8i
C. 9 + 8i
D. 17 + 6i
If a complex number $${\text{z}} = \frac{{\sqrt 3 }}{2} + {\text{i}}\frac{1}{2}$$ then z4 is
A. $$2\sqrt 2 + 2{\text{i}}$$
B. $$\frac{{ - 1}}{2} + \frac{{{\text{i}}{{\sqrt 3 }^2}}}{2}$$
C. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{2}$$
D. $$\frac{{\sqrt 3 }}{2} - {\text{i}}\frac{1}{8}$$

Join The Discussion