The continuous time unit-step function is defined by
A. \[u\left( t \right) = \left\{ {\begin{array}{*{20}{c}} {1,}&{t > 0} \\ {0,}&{t < 0} \end{array}} \right.\]
B. \[u\left( t \right) = \left\{ {\begin{array}{*{20}{c}} {1,}&{t \geqslant 0} \\ {0,}&{t < 0} \end{array}} \right.\]
C. \[u\left( t \right) = \left\{ {\begin{array}{*{20}{c}} {1,}&{t > 0} \\ {0,}&{t \leqslant 0} \end{array}} \right.\]
D. \[u\left( t \right) = \begin{array}{*{20}{c}} {1,}&{t \ne 0} \end{array}\]
Answer: Option A
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion