The derivative of f(x) = cos x can be estimated using the approximation \[{\text{f}}'\left( {\text{x}} \right) = \frac{{{\text{f}}\left( {{\text{x}} + {\text{h}}} \right) - {\text{f}}\left( {{\text{x}} - {\text{h}}} \right)}}{{2{\text{h}}}}.\]
The percentage error is calculated as \[\left( {\frac{{{\text{Exact value}} - {\text{Approx value}}}}{{{\text{Exact value}}}} \times 100} \right)\]
The percentage error in the derivative of f(x) at \[{\text{x}} = \frac{\pi }{6}\]  radian choosing h = 0.1 radian is
        A. > 1% and < 5%
B. < 0.1%
C. > 0.1% and < 1%
D. > 5%
Answer: Option C
Related Questions on Calculus
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion