The DFT of a vector [a b c d] is the vector [α β γ δ]. Consider the product
\[\left[ {p\,q\,r\,s} \right] = \left[ {a\,b\,c\,d} \right]\left[ {\begin{array}{*{20}{c}}
a&b&c&d \\
d&a&b&c \\
c&d&a&b \\
b&c&d&a
\end{array}} \right]\]
The DFT of the vector [p q r s] is a scaled version of
A. [α2 β2 γ2 δ2]
B. $$\left[ {\sqrt \alpha \sqrt \beta \sqrt \gamma \sqrt \delta } \right]$$
C. [α + β β + δ δ + γ γ + α]
D. [α β γ δ]
Answer: Option A
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β
Join The Discussion