The Dirac-delta function δ(t) is defined as
A. $$\delta \left( t \right) = \left\{ {\matrix{ {1,} & {t = 0} \cr {0,} & {{\rm{otherwise}}} \cr } } \right.$$
B. $$\delta \left( t \right) = \left\{ {\matrix{ {\infty ,} & {t = 0} \cr {0,} & {{\rm{otherwise}}\,} \cr } } \right.$$
C. $$\delta \left( t \right) = \left\{ {\matrix{ {1,} & {t = 0} \cr {0,} & {{\rm{otherwise}}} \cr } } \right.\,\,{\rm{and}}\,\int\limits_{ - \infty }^\infty {\delta \left( t \right)dt = 1} $$
D. $$\delta \left( t \right) = \left\{ {\matrix{ {\infty ,} & {t = 0} \cr {0,} & {{\rm{otherwise}}} \cr } } \right.\,\,{\rm{and}}\,\int\limits_{ - \infty }^\infty {\delta \left( t \right)dt = 1} $$
Answer: Option D
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion