Examveda

The Dirac-delta function δ(t) is defined as

A. $$\delta \left( t \right) = \left\{ {\matrix{ {1,} & {t = 0} \cr {0,} & {{\rm{otherwise}}} \cr } } \right.$$

B. $$\delta \left( t \right) = \left\{ {\matrix{ {\infty ,} & {t = 0} \cr {0,} & {{\rm{otherwise}}\,} \cr } } \right.$$

C. $$\delta \left( t \right) = \left\{ {\matrix{ {1,} & {t = 0} \cr {0,} & {{\rm{otherwise}}} \cr } } \right.\,\,{\rm{and}}\,\int\limits_{ - \infty }^\infty {\delta \left( t \right)dt = 1} $$

D. $$\delta \left( t \right) = \left\{ {\matrix{ {\infty ,} & {t = 0} \cr {0,} & {{\rm{otherwise}}} \cr } } \right.\,\,{\rm{and}}\,\int\limits_{ - \infty }^\infty {\delta \left( t \right)dt = 1} $$

Answer: Option D


Join The Discussion

Related Questions on Signal Processing