The Dirac delta function δ(t) is defined as
A. \[\delta \left( t \right) = \left\{ \begin{array}{l} 1\,\,\,\,t = 0\\ 0\,\,\,\,{\rm{otherwise}} \end{array} \right.\]
B. \[\delta \left( t \right) = \left\{ \begin{array}{l} \infty \,\,\,\,t = 0\\ 0\,\,\,\,{\rm{otherwise}} \end{array} \right.\]
C. \[\delta \left( t \right) = \left\{ \begin{array}{l} 1\,\,\,\,t = 0\\ 0\,\,\,\,{\rm{otherwise}} \end{array} \right.{\rm{ and }}\int\limits_{ - \infty }^\infty {\delta \left( t \right)dt = 1} \]
D. \[\delta \left( t \right) = \left\{ \begin{array}{l} \infty \,\,\,\,t = 0\\ 0\,\,\,\,{\rm{otherwise}} \end{array} \right.{\rm{ and }}\int\limits_{ - \infty }^\infty {\delta \left( t \right)dt = 1} \]
Answer: Option D
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion