The double integral $$\int\limits_0^{\text{a}} {\int\limits_0^{\text{y}} {{\text{f}}\left( {{\text{x, y}}} \right){\text{dx dy}}} } $$ is equivalent to
A. $$\int\limits_0^{\text{x}} {\int\limits_0^{\text{y}} {{\text{f}}\left( {{\text{x, y}}} \right){\text{dx dy}}} } $$
B. $$\int\limits_0^{\text{a}} {\int\limits_{\text{x}}^{\text{y}} {{\text{f}}\left( {{\text{x, y}}} \right){\text{dx dy}}} } $$
C. $$\int\limits_0^{\text{a}} {\int\limits_{\text{x}}^{\text{a}} {{\text{f}}\left( {{\text{x, y}}} \right){\text{dy dx}}} } $$
D. $$\int\limits_0^{\text{a}} {\int\limits_0^{\text{a}} {{\text{f}}\left( {{\text{x, y}}} \right){\text{dx dy}}} } $$
Answer: Option C
The Taylor series expansion of 3 sinx + 2 cosx is . . . . . . . .
A. 2 + 3x - x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. 2 - 3x + x2 - \[\frac{{{{\text{x}}^3}}}{2}\] + ...
C. 2 + 3x + x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
D. 2 - 3x - x2 + \[\frac{{{{\text{x}}^3}}}{2}\] + ...
B. \[\infty \]
C. \[\frac{1}{2}\]
D. \[ - \infty \]
A. \[1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
B. \[ - 1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
C. \[1 - \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]
D. \[ - 1 + \frac{{{{\left( {{\text{x}} - \pi } \right)}^2}}}{{3!}} + ...\]

Join The Discussion