Solution (By Examveda Team)
$$\eqalign{
& \frac{{{{\tan }^6}\theta - {{\sec }^6}\theta + 3{{\sec }^2}\theta \,{{\tan }^2}\theta }}{{{{\tan }^2}\theta + {{\cot }^2}\theta + 2}} \cr
& = \frac{{{{\left( {{{\tan }^2}\theta } \right)}^3} - {{\left( {{{\sec }^2}\theta } \right)}^3} + 3{{\sec }^2}\theta \,{{\tan }^2}\theta }}{{{{\tan }^2}\theta + {{\cot }^2}\theta + 2}} \cr
& \left[ {{a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)} \right] \cr
& = \frac{{\left( {{{\tan }^2}\theta - {{\sec }^2}\theta } \right)\left( {{{\tan }^4}\theta + {{\sec }^4}\theta + {{\tan }^2}\theta {{\sec }^2}\theta + 3{{\sec }^2}\theta {{\tan }^2}\theta } \right)}}{{{{\tan }^2}\theta + {{\cot }^2}\theta + 2}} \cr
& = \frac{{ - 1\left( {{{\tan }^4}\theta + {{\sec }^4}\theta + {{\tan }^2}\theta {{\sec }^2}\theta - 3{{\sec }^2}\theta {{\tan }^2}\theta } \right)}}{{{{\tan }^2}\theta + {{\cot }^2}\theta + 2}} \cr
& = \frac{{ - 1\left( {{{\tan }^4}\theta + {{\sec }^4}\theta - 2{{\sec }^2}\theta {{\tan }^2}\theta } \right)}}{{{{\tan }^2}\theta + {{\cot }^2}\theta + 2}} \cr
& = \frac{{ - 1\left( {{{\sec }^2}\theta - {{\tan }^2}\theta } \right)}}{{{{\tan }^2}\theta + {{\cot }^2}\theta + 2}} \cr
& = \frac{{ - 1}}{{{{\left( {\tan \theta + \cot \theta } \right)}^2}}} \cr
& = \frac{{ - 1}}{{{{\left( {\frac{{\sin \theta }}{{\cos \theta }} + \frac{{\cos \theta }}{{\sin \theta }}} \right)}^2}}} \cr
& = \frac{{ - 1}}{{{{\left( {\frac{{{{\sin }^2}\theta + {{\cos }^2}\theta }}{{\cos \theta \sin \theta }}} \right)}^2}}} \cr
& = - {\left( {\cos \theta \sin \theta } \right)^2} \cr
& = - {\cos ^2}\theta {\sin ^2}\theta \cr} $$
Join The Discussion