Examveda

The expression $${\text{V}} = \int_0^{\text{H}} {\pi {{\text{R}}^2}{{\left( {1 - \frac{{\text{h}}}{{\text{H}}}} \right)}^2}} {\text{dh}}$$      for the volume of a cone is equal to

A. $$\int_0^{\text{R}} {\pi {{\text{R}}^2}{{\left( {1 - \frac{{\text{h}}}{{\text{H}}}} \right)}^2}} {\text{dr}}$$

B. $$\int_0^{\text{R}} {\pi {{\text{R}}^2}{{\left( {1 - \frac{{\text{h}}}{{\text{H}}}} \right)}^2}} {\text{dh}}$$

C. $$\int_0^{\text{H}} {2\pi {\text{rH}}{{\left( {1 - \frac{{\text{r}}}{{\text{R}}}} \right)}^2}} {\text{dh}}$$

D. $$4\int_0^{\text{R}} {\pi {\text{rH}}{{\left( {1 - \frac{{\text{r}}}{{\text{R}}}} \right)}^2}} {\text{dr}}$$

Answer: Option D


This Question Belongs to Engineering Maths >> Calculus

Join The Discussion

Related Questions on Calculus