The final value theorem is
A. $$\mathop {\lim }\limits_{k \to \infty } x\left( k \right) = \mathop {\lim }\limits_{z \to 1} \left( {z - 1} \right){X^ + }\left( z \right)$$
B. $$\mathop {\lim }\limits_{k \to \infty } x\left( k \right) = \mathop {\lim }\limits_{z \to 1} {X^ + }\left( z \right)$$
C. $$\mathop {\lim }\limits_{k \to \infty } x\left( k \right) = \mathop {\lim }\limits_{z \to 0} \left( {{z^{ - 1}}} \right){X^ + }\left( z \right)$$
D. $$\mathop {\lim }\limits_{k \to \infty } x\left( k \right) = \mathop {\lim }\limits_{z \to 0} {\left( {z - 1} \right)^{ - 1}}{X^ + }\left( {{z^{ - 1}}} \right)$$
Answer: Option A
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion