Examveda

The final value theorem is

A. $$\mathop {\lim }\limits_{k \to \infty } x\left( k \right) = \mathop {\lim }\limits_{z \to 1} \left( {z - 1} \right){X^ + }\left( z \right)$$

B. $$\mathop {\lim }\limits_{k \to \infty } x\left( k \right) = \mathop {\lim }\limits_{z \to 1} {X^ + }\left( z \right)$$

C. $$\mathop {\lim }\limits_{k \to \infty } x\left( k \right) = \mathop {\lim }\limits_{z \to 0} \left( {{z^{ - 1}}} \right){X^ + }\left( z \right)$$

D. $$\mathop {\lim }\limits_{k \to \infty } x\left( k \right) = \mathop {\lim }\limits_{z \to 0} {\left( {z - 1} \right)^{ - 1}}{X^ + }\left( {{z^{ - 1}}} \right)$$

Answer: Option A


Join The Discussion

Related Questions on Signal Processing