The Fourier series expansion of the saw-toothed waveform f(x) = x in (-π, π) of period 2π gives the series, $$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \,....$$
The sum is equal to
A. $$\frac{\pi }{2}$$
B. $$\frac{{{\pi ^2}}}{4}$$
C. $$\frac{{{\pi ^2}}}{{16}}$$
D. $$\frac{\pi }{4}$$
Answer: Option D
A. $$\frac{1}{{{\text{s}} + {\text{a}}}}$$
B. $$\frac{1}{{{\text{s}} - {\text{a}}}}$$
C. $$\frac{1}{{{\text{a}} - {\text{s}}}}$$
D. $$\infty $$
Evaluate $$\int\limits_0^\infty {\frac{{\sin {\text{t}}}}{{\text{t}}}{\text{dt}}} $$
A. $$\pi $$
B. $$\frac{\pi }{2}$$
C. $$\frac{\pi }{4}$$
D. $$\frac{\pi }{8}$$
A. $$\frac{{1 + {{\text{s}}^2}}}{{{{\left( {{{\text{s}}^2} - 1} \right)}^2}}}$$
B. $$\frac{{{\text{st}}}}{{\left( {{{\text{s}}^2} - 1} \right)}}$$
C. $$\frac{{1 - {{\text{s}}^2}}}{{{{\left( {{{\text{s}}^2} - 1} \right)}^2}}}$$
D. $$\frac{{1 + {{\text{s}}^2}}}{{1 - {{\text{s}}^2}}}$$
A. $$\frac{2}{{{\text{s}} + 1}}$$
B. $$\frac{4}{{{\text{s}} + 1}}$$
C. $$\frac{4}{{{{\text{s}}^2} + 1}}$$
D. $$\frac{2}{{{{\text{s}}^2} + 1}}$$

Join The Discussion