The Fourier series representation of an impulse train denoted by
$$s\left( t \right) = \sum\limits_{n = - \infty }^\infty {\delta \left( {t - n{T_0}} \right)} \,{\rm{is}}\,{\rm{given}}\,{\rm{by}}$$
A. $${1 \over {{T_0}}}\sum\limits_{n = - \infty }^\infty {\exp \left( { - {{j2\pi nt} \over {{T_0}}}} \right)} $$
B. $${1 \over {{T_0}}}\sum\limits_{n = - \infty }^\infty {\exp } \left( { - {{j\pi nt} \over {{T_0}}}} \right)$$
C. $${1 \over {{T_0}}}\sum\limits_{n = - \infty }^\infty {\exp } \left( {{{j\pi nt} \over {{T_0}}}} \right)$$
D. $${1 \over {{T_0}}}\sum\limits_{n = - \infty }^\infty {\exp } \left( {{{j2\pi nt} \over {{T_0}}}} \right)$$
Answer: Option A
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion