The fundamental period T of a periodic-continuous time signal x(t), is
A. the smallest positive constant satisfying the relation x(t) = x(t + mT) for every t and any integer m
B. the positive constant satisfying the relation x(t) = x(t + mT) for every t and any integer m
C. the largest positive constant satisfying the relation x(t) = x(t + mT) for any t and any integer m
D. the smallest positive integer satisfying the relation x(t) = x(t + mT) for any t and any m
Answer: Option A
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion