Examveda The greatest value of sin4θ + cos4θ is? A. 2B. 3C. $$\frac{1}{2}$$D. 1Answer: Option D Solution (By Examveda Team) $$\eqalign{ & {\sin ^2}\theta + {\cos ^2}\theta = 1 \cr & {\text{Squaring both sides}} \cr & {\sin ^4}\theta + {\cos ^4}\theta \cr & = 1 - 2{\sin ^2}\theta . {\cos ^2}\theta \cr & {\text{Put}}\,\theta = {90^ \circ } \cr & = 1 - 2{\sin ^2}{90^ \circ } \times {\cos ^2}{90^ \circ } \cr & = 1 - 0 \cr & = 1 \cr} $$ This Question Belongs to Arithmetic Ability >> Trigonometry
Solution (By Examveda Team) $$\eqalign{ & {\sin ^2}\theta + {\cos ^2}\theta = 1 \cr & {\text{Squaring both sides}} \cr & {\sin ^4}\theta + {\cos ^4}\theta \cr & = 1 - 2{\sin ^2}\theta . {\cos ^2}\theta \cr & {\text{Put}}\,\theta = {90^ \circ } \cr & = 1 - 2{\sin ^2}{90^ \circ } \times {\cos ^2}{90^ \circ } \cr & = 1 - 0 \cr & = 1 \cr} $$
The equation $${\cos ^2}\theta $$ = $$\frac{{{{\left( {x + y} \right)}^2}}}{{4xy}}$$ is only possible when ? A. x = -yB. x > yC. x = yD. x < y View Answer
Join The Discussion