The Hamiltonian of a particle is $$H = \frac{{{p^2}}}{{2m}} + pq,$$ where q is generalised coordinate and p is the corresponding canonical momentum. The Lagrangian is
A. $$\frac{m}{2}{\left( {\frac{{dq}}{{dt}} + q} \right)^2}$$
B. $$\frac{m}{2}{\left( {\frac{{dq}}{{dt}} - q} \right)^2}$$
C. $$\frac{m}{2}\left[ {{{\left( {\frac{{dq}}{{dt}}} \right)}^2} + q\frac{{dq}}{{dt}} - {q^2}} \right]$$
D. $$\frac{m}{2}\left[ {{{\left( {\frac{{dq}}{{dt}}} \right)}^2} - q\frac{{dq}}{{dt}} + {q^2}} \right]$$
Answer: Option B
A. increases till mass falls into hole
B. decreases till mass falls into hole
C. remains constant
D. becomes zero at radius r1, where 0 < r1 < r0
A. $$\frac{c}{3}$$
B. $$\frac{{\sqrt 2 }}{3}c$$
C. $$\frac{c}{2}$$
D. $$\frac{{\sqrt 3 }}{2}c$$
The Hamiltonian corresponding to the Lagrangian $$L = a{{\dot x}^2} + b{{\dot y}^2} - kxy$$ is
A. $$\frac{{{p_x}^2}}{{2a}} + \frac{{{p_y}^2}}{{2b}} + kxy$$
B. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} - kxy$$
C. $$\frac{{{p_x}^2}}{{4a}} + \frac{{{p_y}^2}}{{4b}} + kxy$$
D. $$\frac{{{p_x}^2 + {p_y}^2}}{{4ab}} + kxy$$
A. circular
B. elliptical
C. parabolic
D. hyperbolic


Join The Discussion