The impulse response h[n] of a linear time invariant system is given as
$$h\left[ n \right] = \left\{ {\matrix{
{ - 2\sqrt 2 ,} \cr
{4\sqrt 2 ,} \cr
{0,} \cr
} } \right.\matrix{
{n = 1, - 1} \cr
{n = 2, - 2} \cr
{{\rm{otherwise}}} \cr
} $$
If the input to the above system is the sequence $${e^{{{j\pi n} \over 4}}},$$ the output is
A. $$4\sqrt 2 {e^{{{j\pi n} \over 4}}}$$
B. $$4\sqrt 2 {e^{ - {{j\pi n} \over 4}}}$$
C. $$4{e^{{{j\pi n} \over 4}}}$$
D. $$ - 4{e^{{{j\pi n} \over 4}}}$$
Answer: Option D
Related Questions on Signal Processing
The Fourier transform of a real valued time signal has
A. Odd symmetry
B. Even symmetry
C. Conjugate symmetry
D. No symmetry
A. $$V$$
B. $${{{T_1} - {T_2}} \over T}V$$
C. $${V \over {\sqrt 2 }}$$
D. $${{{T_1}} \over {{T_2}}}V$$
A. $$T = \sqrt 2 {T_s}$$
B. T = 1.2Ts
C. Always
D. Never
A. $${{\alpha - \beta } \over {\alpha + \beta }}$$
B. $${{\alpha \beta } \over {\alpha + \beta }}$$
C. α
D. β

Join The Discussion